FAIRCHILD

SEMICONDUCTOR TM

74VCX16722 Low Voltage 22-Bit Register with 3.6V Tolerant Inputs and Outputs

General Description

The VCX16722 low voltage 22-bit register contains twentytwo non-inverting D-type flip-flops with 3-STATE outputs and is intended for bus oriented applications. The design has been optimized for use with JEDEC compliant 200 pin DIMM modules.

The 74VCX16722 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O capability up to 3.6V.

The 74VCX16722 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

- 1.65V–3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- t_{PD} (CLK to O_n) 3.6ns max for 3.0V to 3.6V V_{CC} 4.6ns max for 2.3V to 2.7V V_{CC} 9.2ns max for 1.65V to 1.95V V_{CC}
- Power-down high impedance inputs and outputs

February 1999

Revised January 2005

- Supports live insertion/withdrawal (Note 1)
- Meets JEDEC registered module specifications
- Static Drive (I_{OH}/I_{OL}) ±24mA @ 3.0V ±18mA @ 2.3V ±6mA @ 1.65V
- Latchup performance exceeds 300 mA
- ESD performance:
 - Human body model > 2000V

Machine model >200V

Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description				
74VCX16722MTD	MTD64	64-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide				
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.						

© 2005 Fairchild Semiconductor Corporation DS500192

Connection Diagram						
	1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 31 32	$\begin{array}{cccc} 64 & - CLK \\ 63 & - D_0 \\ 62 & - D_1 \\ 61 & - GND \\ 60 & - D_2 \\ 59 & - D_3 \\ 58 & - VCC \\ 55 & - D_6 \\ 55 & - D_5 \\ 55 & - D_6 \\ 53 & - D_7 \\ 56 & - D_5 \\ 55 & - D_6 \\ 53 & - D_7 \\ 52 & - D_8 \\ 51 & - D_9 \\ 50 & - D_{10} \\ 48 & - D_{12} \\ 48 & - D_{12} \\ 44 & - D_{15} \\ 41 & - D_{17} \\ 40 & - GND \\ 39 & - D_{18} \\ 38 & - D_{19} \\ 38 & - D_{20} \\ 35 & - D_{21} \\ 34 & - \overline{CE} \\ \end{array}$				

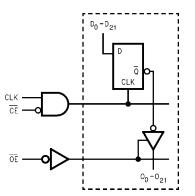
Pin Descriptions

Pin Names	Description
OE	Output Enable Input (Active LOW)
CE	Clock Enable Input (Active Low)
CLK	Clock Input
D ₀ - D ₂₁	Data Inputs
O ₀ - O ₂₁	3-STATE Outputs

Truth Table

CLK	CE	OE	D _n	On
х	Х	Н	Х	Z
х	н	L	Х	On
\uparrow	L	L	L	L
\uparrow	L	L	Н	н
L or H	L	L	Х	On

H = Logic HIGH L = Logic LOW


 $\begin{array}{l} X = Don't Care, \mbox{ but not floating} \\ Z = High \mbox{ Impedance} \\ O_n = Previous \ O_n \mbox{ before LOW-to-HIGH Clock Transition} \end{array}$

 \uparrow = LOW-to-HIGH Clock Transition

Functional Description

The VCX16722 contains twenty-two D-type flip-flops with 3-STATE standard outputs. The twenty-two flip-flops will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-HIGH Clock (CLK) transition, when the Clock-Enable (CE) is LOW. The 3-STATE standard outputs are controlled by the Output-Enable (\overline{OE}). When \overline{OE} is HIGH, the standard outputs are in high impedance mode but this does not interfere with entering new data into the flip-flops.

Logic Diagram

Absolute Maximum Rati	Absolute Maximum Ratings(Note 2)		
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 4)	
DC Input Voltage (V _I)	-0.5V to +4.6V	Power Supply	
Output Voltage (V _O)		Operating	
Outputs 3-STATE	-0.5V to +4.6V	Data Retention Only	
Outputs Active (Note 3)	–0.5V to V _{CC} +	Input Voltage	
	0.5V	Output Voltage (V _O)	
DC Input Diode Current (I _{IK}) V _I < 0V	–50 mA	Output in Active States	
DC Output Diode Current (I _{OK})		Output in 3-STATE	
V _O < 0V	–50 mA	Output Current in I _{OH} /I _{OI}	
$V_{O} > V_{CC}$	+50 mA	$V_{CC} = 3.0V \text{ to } 3.6V$	
DC Output Source/Sink Current		$V_{CC} = 2.3V$ to 2.7V	
(I _{OH} /I _{OL})	±50 mA	$V_{CC} = 1.65V \text{ to } 2.3V$	
DC V_{CC} or Ground Current per		Free Air Operating Temperature	
Supply Pin (I _{CC} or Ground)	±100 mA	Minimum Input Edge Rate ($\Delta t/\Delta$	
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0^{\circ}$	
		Note 2: The "Absolute Maximum Patings	

Recommended Operatin Conditions (Note 4)	g
Power Supply	
Operating	1.65V to 3.6V
Data Retention Only	1.2V to 3.6V
Input Voltage	-0.3V to 3.6V
Output Voltage (V _O)	
Output in Active States	0V to V _{CC}
Output in 3-STATE	0V to 3.6V
Output Current in I _{OH} /I _{OL}	
$V_{CC} = 3.0V$ to 3.6V	±24 mA
$V_{CC} = 2.3V$ to 2.7V	±18 mA
V _{CC} = 1.65V to 2.3V	±6 mA
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta t/\Delta V$)	
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The Recommended Operating Conditions tables will define the conditions for actual device operation.

Note 3: I_{O} Absolute Maximum Rating must be observed.

Note 4: Floating or unused pin (inputs or I/O's) must be held HIGH or LOW.

DC Electrical Characteristics (2.7V $< V_{CC} \leq 3.6V)$

Symbol	Parameter	Conditions	v _{cc} (V)	Min	Max	Units	
V _{IH}	HIGH Level Input Voltage		2.7–3.6	2.0		V	
V _{IL}	LOW Level Input Voltage		2.7–3.6		0.8	V	
V _{ОН}	HIGH Level Output Voltage	$I_{OH} = -100 \ \mu A$	2.7–3.6	V _{CC} - 0.2			
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		v	
		I _{OH} = -18 mA	3.0	2.4		v	
		I _{OH} = -24 mA	3.0	2.2			
V _{OL} LOW	LOW Level Output Voltage	I _{OL} = 100 μA	2.7–3.6		0.2		
		I _{OL} = 12 mA	2.7		0.4	V	
		I _{OL} = 18 mA	3.0		0.4		
		I _{OL} = 24 mA	3.0		0.55		
1	Input Leakage Current	$0V \le V_I \le 3.6V$	2.7–3.6		±5.0	μA	
OZ	3-STATE Output Leakage	$0V \le V_O \le 3.6V$	2.7-3.6		±10	μA	
		$V_I = V_{IH}$ or V_{IL}	2.7-3.0		±10	μΑ	
OFF	Power Off Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	μA	
сс	Quiescent Supply Current	V _I = V _{CC} or GND	2.7-3.6		20	μA	
		$V_{CC} \le (V_I, V_O) \le 3.6V$ (Note 5)	2.7-3.0		±20	μΑ	
۵l _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7-3.6		750	μΑ	

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3–2.7	1.6		V
V _{IL}	LOW Level Input Voltage		2.3–2.7		0.7	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \ \mu A$	2.3–2.7	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		v
		$I_{OH} = -12 \text{ mA}$	2.3	1.8		Ň
		I _{OH} = -18 mA	2.3	1.7		1
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3–2.7		0.2	
		$I_{OL} = 12mA$	2.3		0.4	V
		I _{OL} = 18 mA	2.3		0.6	1
1	Input Leakage Current	$0 \le V_I \le 3.6V$	2.3–2.7		±5.0	μA
OZ	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	2.3-2.7		±10	
		$V_I = V_{IH}$ or V_{IL}	2.3-2.1		±ΙΟ	μA
OFF	Power Off Leakage Current	$0 \le (V_I, V_O) \le 3.6V$	0		10	μA
СС	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3-2.7		20	
		$V_{CC} \le (V_1, V_0) \le 3.6V$ (Note 6)	2.3-2.1		±20	μA

DC Electrical Characteristics (1.65V \leq V_{CC} < 2.3V)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		1.65 - 2.3	$0.65 \times V_{CC}$		V
V _{IL}	LOW Level Input Voltage		1.65 - 2.3		$0.35 \times V_{CC}$	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \ \mu A$	1.65 - 2.3	V _{CC} - 0.2		V
		$I_{OH} = -6 \text{ mA}$	1.65	1.25		v
V _{OL} LOW Level Output	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 2.3		0.2	V
	I _{OL} =	I _{OL} = 6mA	1.65		0.3	v
I _I	Input Leakage Current	$0 \le V_I \le 3.6V$	1.65 - 2.3		±5.0	μΑ
l _{oz}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	1.65 - 2.3		±10	A
		$V_I = V_{IH}$ or V_{IL}	1.05 - 2.3		±10	μA
I _{OFF}	Power Off Leakage Current	$0 \le (V_I, V_O) \le 3.6V$	0		10	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.65 - 2.3		20	
		$V_{CC} \le (V_1, V_0) \le 3.6V$ (Note 7)	1.05 - 2.3		±20	μA

Note 7: Outputs disabled or 3-STATE only.

AC Electrical Characteristics (Note 8)

			$T_A = -40^\circ$	C to +85°C,	C _L = 30 pF, I	$R_L = 500\Omega$		
Symbol	Parameter	V _{CC} = 3.	$3V \pm 0.3V$	$V_{CC}=\textbf{2.5}\pm\textbf{0.2V}$		$V_{CC}=1.8\pm0.15V$		Units
		Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		100		MHz
t _{PHL} , t _{PLH}	Propagation Delay Clock to Bus	1.3	3.6	1.5	4.6	2.0	9.2	ns
t _{PZL} , t _{PZH}	Output Enable Time	0.6	3.5	0.8	4.5	1.5	9.0	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	0.6	3.2	0.8	4.2	1.5	7.6	ns
t _S	Setup Time	2.0		2.0		3.0		ns
t _H	Hold Time	0.0		0.0		0.5		ns
t _W	Pulse Width	1.5		1.5		4.0		ns
t _{OSHL} t _{OSLH}	Output to Output Skew (Note 9)		0.5		0.5		0.75	ns

Note 8: For C_L = 50 pF, add approximately 300 ps to the AC maximum specification.

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

AC Electrical Characteristics Over Load (Note 10)

Symbol		T _A = -0				
	Parameter	C _L =	0 pF	C _L =	Units	
		Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Propagation Delay Clock to Bus	1.1	2.5	1.9	3.9	ns
t _{PZL} , t _{PZH}	Output Enable Time	0.7	2.4	1.0	3.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	0.7	2.1	1.0	3.5	ns
t _S	Setup Time	2.0		2.0		ns
t _H	Hold Time	0.0		0.0		ns
t _W	Pulse Width	1.5	İ	1.5		ns
Note 10: This p	arameter is guaranteed by characterization but	not tested.		•		•

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{cc}	$T_A = +25^{\circ}C$	Units
Cymbol		Conditions	(V)	Typical	Onits
V _{OLP}	Quiet Output Dynamic Peak VOL	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.25	
			2.5	0.6	V
			3.3	0.8	
V _{OLV} Quiet Output Dynamic Valley V ₀	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.25	
			2.5	-0.6	V
			3.3	-0.8	
V _{OHV}	Quiet Output Dynamic Valley VOH	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.5	
			2.5	1.9	V
			3.3	2.2	

apacitance

Capacitance				
Symb	ol Parameter	Conditions	$T_A = +25^{\circ}C$	Units
Cynno			Typical	
C _{IN}	Input Capacitance	$V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V, \text{ or } 3.3V,$	3.5	pF
C _{I/O}	Input/Output Capacitance	$V_{I} = 0V$, or V_{CC} , $V_{CC} = 1.8V$, 2.5V or 3.3V	5.5	pF
C _{PD}	Power Dissipation Capacitance	V_{I} = 0V or V_{CC},f = 10 MHz, V_{CC} = 1.8V, 2.5V or 3.3V	13	pF

I_{OUT} - V_{OUT} Characteristics

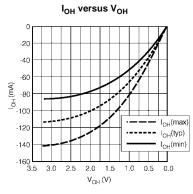


FIGURE 1. Characteristics for Output - Pull Up Driver

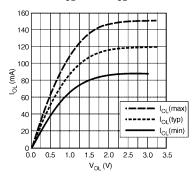
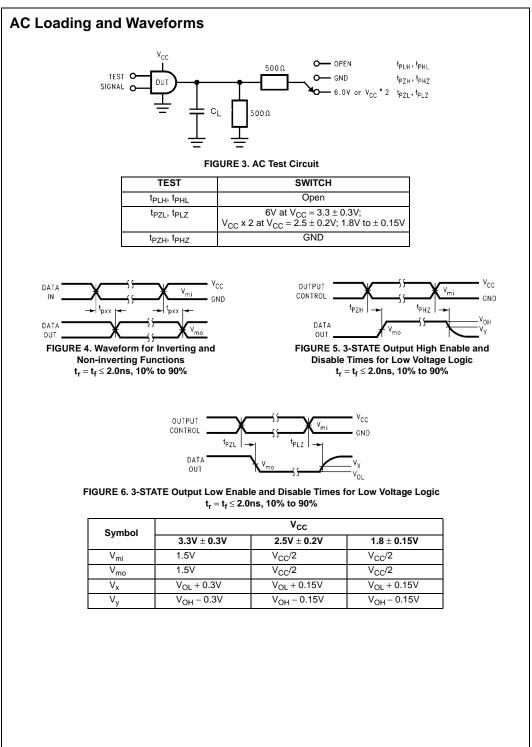
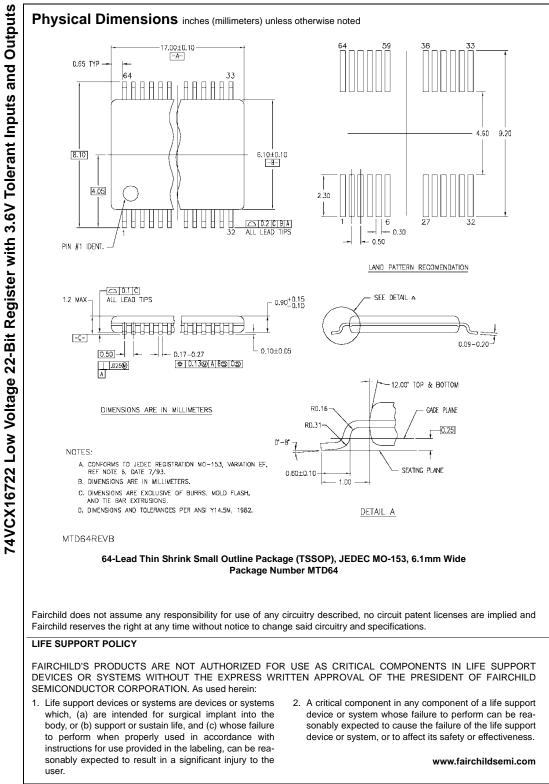




FIGURE 2. Characteristics for Output - Pull Down Driver

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.